1 research outputs found

    Monitoring system for long-distance pipelines subject to destructive attack

    Get PDF
    In an era of terrorism, it is important to protect critical pipeline infrastructure, especially in countries where life is strongly dependent on water and the economy on oil and gas. Structural health monitoring (SHM) using acoustic waves is one of the common solutions. However, considerable prior work has shown that pipes are cylindrical acoustic waveguides that support many dispersive, lossy modes; only the torsional T(0, 1) mode has zero dispersion. Although suitable transducers have been developed, these typically excite several modes, and even if they do not, bends and supports induce mode conversion. Moreover, the high-power transducers that could in principle be used to overcome noise and attenuation in long distance pipes present an obvious safety hazard with volatile products, making it difficult to distinguish signals and extract pipeline status information. The problem worsens as the pipe diameter increases or as the frequency rises (due to the increasing number of modes), if the pipe is buried (due to rising attenuation), or if the pipe carries a flowing product (because of additional acoustic noise). Any system is therefore likely to be short-range. This research proposes the use of distributed active sensor network to monitor long-range pipelines, by verifying continuity and sensing small disturbances. A 4-element cuboid Electromagnetic Acoustic Transducer (EMAT) is used to excite the longitudinal L(0,1) mode. Although the EMAT also excites other slower modes, long distance propagation allows their effects to be separated. Correlation detection is exploited to enhance signal-to-noise ratio (SNR), and code division multiplexing access (CDMA) is used to distinguish between nodes in a multi-node system. An extensive numerical search for multiphase quasi-orthogonal codes for different user numbers is conducted. The results suggest that side lobes degrade performance even with the highest possible discrimination factor. Golay complementary pairs (which can eliminate the side lobes completely, albeit at the price of a considerable reduction in speed) are therefore investigated as an alternative. Pipeline systems are first reviewed. Acoustic wave propagation is described using standard theory and a freeware modeling package. EMAT modeling is carried out by numerical calculation of electromagnetic fields. Signal propagation is investigated theoretically using a full system simulator that allows frequency-domain description of transducers, dispersion, multi-mode propagation, mode conversion and multiple reflections. Known codes for multiplexing are constructed using standard algorithms, and novel codes are discovered by an efficient directed search. Propagation of these codes in a dispersive system is simulated. Experiments are carried out using small, unburied air-filled copper pipes in a frequency range where the number of modes is small, and the attenuation and noise are low. Excellent agreement is obtained between theory and experiment. The propagation of pulses and multiplexed codes over distances up to 200 m are successfully demonstrated, and status changes introduced by removable reflectors are detected.Open Acces
    corecore